Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope.

نویسندگان

  • Zengbo Wang
  • Wei Guo
  • Lin Li
  • Boris Luk'yanchuk
  • Ashfaq Khan
  • Zhu Liu
  • Zaichun Chen
  • Minghui Hong
چکیده

The imaging resolution of a conventional optical microscope is limited by diffraction to ~200 nm in the visible spectrum. Efforts to overcome such limits have stimulated the development of optical nanoscopes using metamaterial superlenses, nanoscale solid immersion lenses and molecular fluorescence microscopy. These techniques either require an illuminating laser beam to resolve to 70 nm in the visible spectrum or have limited imaging resolution above 100 nm for a white-light source. Here we report a new 50-nm-resolution nanoscope that uses optically transparent microspheres (for example, SiO₂, with 2 μm<diameter<9 μm) as far-field superlenses (FSL) to overcome the white-light diffraction limit. The microsphere nanoscope operates in both transmission and reflection modes, and generates magnified virtual images with a magnification up to ×8. It may provide new opportunities to image viruses and biomolecules in real time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS).

We characterize a novel fluorescence microscope which combines the high spatial discrimination of a total internal reflection epi-fluorescence (epi-TIRF) microscope with that of stimulated emission depletion (STED) nanoscopy. This combination of high axial confinement and dynamic-active lateral spatial discrimination of the detected fluorescence emission promises imaging and spectroscopy of the...

متن کامل

Nanoscope based on nanowaveguides.

The far field spatial resolution of conventional optical lenses is of the order of the wavelength of light, due to loss in the far field of evanescent, near electromagnetic field components. We show that subwavelength details can be restored in the far field with an array of divergent nanowaveguides, which map the discretized, subwavelength image of an object into a magnified image observable w...

متن کامل

Three-Dimensional Super-Resolution Morphology by Near-Field Assisted White-Light Interferometry

Recent developments in far-field fluorescent microscopy have enabled nanoscale imaging of biological entities by ingenious applications of fluorescent probes. For non-fluorescence applications, however, scanning probe microscopy still remains one of the most commonly used methods to "image" nanoscale features in all three dimensions, despite its limited throughput and invasiveness to scanned sa...

متن کامل

Ultra-High Resolution 3D Imaging of Whole Cells

Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whol...

متن کامل

Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens

Microspheres can function as optical superlenses for nanoscale super-resolution imaging. The imaging performance is mainly affected by the size and refractive index of the microsphere. Precise control of these parameters is a challenging task but of fundamental importance to the further development of the technique. In this study, we demonstrate for the first time a nanoparticle-hybrid suspensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011